3.711 \(\int \frac{1}{x^2 (a+b x^2) \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=74 \[ -\frac{b \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} \sqrt{b c-a d}}-\frac{\sqrt{c+d x^2}}{a c x} \]

[Out]

-(Sqrt[c + d*x^2]/(a*c*x)) - (b*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(a^(3/2)*Sqrt[b*c - a*d
])

________________________________________________________________________________________

Rubi [A]  time = 0.0533914, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {480, 12, 377, 205} \[ -\frac{b \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} \sqrt{b c-a d}}-\frac{\sqrt{c+d x^2}}{a c x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(Sqrt[c + d*x^2]/(a*c*x)) - (b*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(a^(3/2)*Sqrt[b*c - a*d
])

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx &=-\frac{\sqrt{c+d x^2}}{a c x}-\frac{\int \frac{b c}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{a c}\\ &=-\frac{\sqrt{c+d x^2}}{a c x}-\frac{b \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{a}\\ &=-\frac{\sqrt{c+d x^2}}{a c x}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{a}\\ &=-\frac{\sqrt{c+d x^2}}{a c x}-\frac{b \tan ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [C]  time = 3.15722, size = 177, normalized size = 2.39 \[ -\frac{\left (\frac{d x^2}{c}+1\right ) \left (\frac{4 x^2 \left (c+d x^2\right ) (b c-a d) \, _2F_1\left (2,2;\frac{5}{2};\frac{(b c-a d) x^2}{c \left (b x^2+a\right )}\right )}{3 c^2 \left (a+b x^2\right )}+\frac{\left (c+2 d x^2\right ) \sin ^{-1}\left (\sqrt{\frac{x^2 (b c-a d)}{c \left (a+b x^2\right )}}\right )}{c \sqrt{\frac{a x^2 \left (c+d x^2\right ) (b c-a d)}{c^2 \left (a+b x^2\right )^2}}}\right )}{x \left (a+b x^2\right ) \sqrt{c+d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(x^2*(a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(((1 + (d*x^2)/c)*(((c + 2*d*x^2)*ArcSin[Sqrt[((b*c - a*d)*x^2)/(c*(a + b*x^2))]])/(c*Sqrt[(a*(b*c - a*d)*x^2
*(c + d*x^2))/(c^2*(a + b*x^2)^2)]) + (4*(b*c - a*d)*x^2*(c + d*x^2)*Hypergeometric2F1[2, 2, 5/2, ((b*c - a*d)
*x^2)/(c*(a + b*x^2))])/(3*c^2*(a + b*x^2))))/(x*(a + b*x^2)*Sqrt[c + d*x^2]))

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 334, normalized size = 4.5 \begin{align*} -{\frac{b}{2\,a}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-ab}}}{\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}+{\frac{b}{2\,a}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-ab}}}{\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}-{\frac{1}{acx}\sqrt{d{x}^{2}+c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

-1/2*b/a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d
-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-
a*b)^(1/2)))+1/2*b/a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/
2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2
))/(x-1/b*(-a*b)^(1/2)))-(d*x^2+c)^(1/2)/a/c/x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )} \sqrt{d x^{2} + c} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*sqrt(d*x^2 + c)*x^2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.76213, size = 682, normalized size = 9.22 \begin{align*} \left [-\frac{\sqrt{-a b c + a^{2} d} b c x \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \,{\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt{-a b c + a^{2} d} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \,{\left (a b c - a^{2} d\right )} \sqrt{d x^{2} + c}}{4 \,{\left (a^{2} b c^{2} - a^{3} c d\right )} x}, -\frac{\sqrt{a b c - a^{2} d} b c x \arctan \left (\frac{\sqrt{a b c - a^{2} d}{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c}}{2 \,{\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} +{\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) + 2 \,{\left (a b c - a^{2} d\right )} \sqrt{d x^{2} + c}}{2 \,{\left (a^{2} b c^{2} - a^{3} c d\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(-a*b*c + a^2*d)*b*c*x*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*
c*d)*x^2 + 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) +
4*(a*b*c - a^2*d)*sqrt(d*x^2 + c))/((a^2*b*c^2 - a^3*c*d)*x), -1/2*(sqrt(a*b*c - a^2*d)*b*c*x*arctan(1/2*sqrt(
a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) +
2*(a*b*c - a^2*d)*sqrt(d*x^2 + c))/((a^2*b*c^2 - a^3*c*d)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \left (a + b x^{2}\right ) \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x**2*(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.14061, size = 150, normalized size = 2.03 \begin{align*} d^{\frac{3}{2}}{\left (\frac{b \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{\sqrt{a b c d - a^{2} d^{2}} a d} + \frac{2}{{\left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} - c\right )} a d}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

d^(3/2)*(b*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d
 - a^2*d^2)*a*d) + 2/(((sqrt(d)*x - sqrt(d*x^2 + c))^2 - c)*a*d))